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Generalized Taylor-Aris dispersion in discrete spatially periodic networks:
Microfluidic applications
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A theory is presented for the lumped parameter, convective-diffusive transport of individual, noninteracting
Brownian solute particles~‘‘macromolecules’’! moving within spatially periodic, solvent-filled networks—the
latter representing models of chip-based microfluidic chromatographic separation devices, as well as porous
media. Using graph-theoretical techniques, the composite medium is conceptually decomposed into a network
of channels~the edges! through which the solute is transported by a combination of molecular diffusion and
either ‘‘piggyback’’ entrainment within a flowing solvent or an externally applied force field acting upon the
solute molecules. A probabilistic choice of egress channel for a solute particle exiting the intersection~vertex!
of the channels is furnished by an imperfect mixing model. A spatially periodic, Taylor-Aris-like ‘‘method-of-
moments’’ scheme is applied to this transport model, leading to discrete matrix equations for computing the

network-scale particle velocity vectorŪ* and dispersivity dyadicD̄* in terms of the prescribed microscale
transport parameters and network geometry characterizing the basic unit cell of which the spatially periodic
device is comprised. The ensuing algebraic equations governing the vertex-based, discrete unit-cell ‘‘fields’’

P0
`( i ) andB( i ) ( i 51,2,...,n), whose paradigmatic summations yieldŪ* andD̄* , constitutediscreteanalogs of

classicalcontinuousmacrotransport phenomenological parameters,P0
`(r ) andB(r ), with r a continuouspo-

sition vector defined within the unit cell. The ease with which these discrete calculations can be performed for
complex networks renders feasible parametric studies of potential microfluidic chip designs, particularly those
pertinent to biomolecular separation schemes. Application of this discrete theory to the dispersion analysis of
pressure-driven flow in spatially periodic serpentine microchannels is shown to accord with existing results
previously derived using classical continuous macrotransport theory.

DOI: 10.1103/PhysRevE.65.021103 PACS number~s!: 05.40.Jc, 07.10.Cm, 47.55.Mh
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I. INTRODUCTION

Engineering design and analysis of spatially periodic m
crofluidic separation devices requires characterizing
functional dependence of chip-scale~L-scale! mean solute
transit rates across the device upon the prescribed interst
scale ~l-scale; l !L! parameters quantifying the repetitiv
unit-cell configuration and local transport properties of t
several distinct~macromolecular! solutes to be separated a
these molecules traverse the fluid-filled interstitial space.
is often the case in such modeling schemes, a rigor
pointwise~‘‘continuous’’! description of thel-scale transport
within the network tends to be exceedingly difficult~if at all
possible!, owing in large measure to incomplete knowled
of the detailed mechanisms quantifying the transport of fl
ible polymeric or biological molecules within constrainin
geometries. Consequently, the rigor implicit in any contin
ous model for predicting theL-scale solute transport acros
the chip as a whole, such as is embodied in classical ge
alized Taylor dispersion theory@1#, is often negated by the
need to invoke coarse,ad hoc assumptions regarding th
physical nature of the local solute transport processes, s
as employing a~scalar! mean electrophoretic solute mobilit
in lieu of the exact pointwise mobility dyadic. The prese
paper aims to incorporate,a priori, all of our ignorance of
the detailed phenomenology underlying these local iss
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into a discrete network theory, rendering the latter anal
cally and computationally tractable when compared with
more rigorous continuous descriptions@1# of such spatially
periodic networks.

The analysis which follows is focused primarily upo
modeling microfluidic chromatographic separation devic
embossed on chips. In the context of chromatographic se
rations, such micropatterned media find ready application
vector chromatographic separation devices@2#, wherein the
distinct species undergo simultaneous directional and tem
ral separation. By ‘‘directional’’ is meant that, on theL scale,
different species move in different directions in response
the animating force. In contrast, ‘‘temporal’’ separation refe
to the fact that even if the several species move, on aver
in the same direction, they generally do so at differe
speeds, thereby effecting their separation in time, such
occurs in conventional scalar~or unidirectional! chromatog-
raphy. Experiments performed on such micropatterned
vices have demonstrated the efficient separation of varia
length DNA strands@3,4#.

Previous attempts to model such directional separa
phenomena include our application of rigorous continuo
Taylor-Aris dispersion theory@2# and a preliminary version
@5# of the present theory, as well as more intuitive mod
@6,7# developed by others. In addition to being directly a
plicable to the phenomenon of vector chromatography,
generic theory to be developed herein lends itself to appl
tions involving other classes of microfluidic separation d
vices, such as magneto-sensitive arrays@8# and en-
©2002 The American Physical Society03-1
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KEVIN D. DORFMAN AND HOWARD BRENNER PHYSICAL REVIEW E65 021103
tropic trapping devices@9#, as well as furnishing an elemen
tary model for transport in porous media. Applications of t
present theory to these specific devices is deferred to fu
installments.

To the extent that Taylor-Aris dispersion theory@1# pro-
vides an adequate description of the global aspects of
solute transport processes occurring within the network, o
two parameters are required to quantify the averageL- or
chip-scale solute transport rates:~i! the mean solute velocity
vector Ū* , representing the coefficient of the asympto
L-scale linear temporal growth in time of the mean vec
displacement of the solute particle from the point of its init
introduction into the network; and~ii ! the solute dispersivity
dyadic D̄* , comparably representing the correspond
growth in time of the solute’s mean-squared dyadic deviat
from its current mean position. The vector velocity diffe
enceŪ1* 2Ū2* between two distinct solute ‘‘molecules’’ o
species 1 and 2, introduced simultaneously, quantifies
relative separation occurring between them as they trav
the network. Similarly, the respective particle dispersiviti
say, D̄1* and D̄2* , serve to characterize the extent of ba
broadening of these solutes, arising from the stochastic
ture of the solute transport processes occurring within
network.

Network models, albeit typically devoid of rigorou
Taylor-Aris foundations, have been applied previously to
vast array of practical problems, including transport in p
rous media@10–20# and fractal models thereof@21–23#,
deep-bed filtration@24,25#, soil science@26,27#, and various
chromatographic separation schemes@28–30#. Early work in
these fields is reviewed by van Brakel@31#. To date, the
majority of these network analyses have focused prima
upon dispersion in random porous media@12,16–
20,27,32,33#, or upon the inherent disorder prevailing
packed bed chromatographic separation devices@28–30#,
with much attention focused upon the solute dispersivity
such networks near the percolation thresh
@17,20,25,27,34#. Moreover, network models@10–17,19,21–
23,25,27,30,32,33# have heretofore dealt mostly with unid
rectional, pressure-driven, piggyback solute transp
through the network. In such circumstances, the mean
ticle motion has invariably been regarded as being colin
with the Darcy-scale~L-scale! solvent pressure gradient,
phenomenon which is not generally true of vector chroma
graphic separations.

In contrast with all but two@14,22# of the preceding net-
work analyses, we here apply a rigorous Taylor-Aris-li
‘‘method-of-moments’’L-scale scheme to the lumped para
eter,l-scale transport processes occurring within the spati
periodic network@35#—ultimately deriving a generic para
digm for calculating the physically relevant macroscopic p
rameters, namelyŪ* and D̄* , from knowledge of the pre-
scribedl-scale data. Building upon the discrete framework
Adler and Brenner@14#, the present contribution relaxes the
assumption of perfect mixing at the intersections of the in
vidual channels, in addition to incorporating molecular d
fusion within the channels into the analysis. With the exc
tions @14,22# cited above, our discretization contrasts w
02110
re

he
ly

r
l

g
n

e
se
,

a-
e

a
-

y

n

rt
r-

ar

-

-
ly

-

f

i-

-

existing generalized Taylor-Aris dispersion theory analy
@1#, which are predicated upon a precise, pointwise, conti
ous description of thel-scale transport phenomena occurri
in spatially periodic media. Accordingly, the generaliz
Taylor-Aris dispersion paradigm developed herein represe
a complete discretization of the comparable classical c
tinuous paradigm@36#—the present graph-theoretical fram
work being motivated by the creation of classes of perfec
periodic chromatographic devices@3,4,8,9#. Moreover, the
concomitant difficulties posed by the geometric complexit
of such microfluidic devices@2# motivates the subsequen
use of experimentally measurable, albeit averaged, disc
l-scale transport parameters in place of classical continu
l-scale transport data.

All network models, including ours, proceed in a simil
fashion, initially requiring threel-scale data inputs pertainin
to: ~i! the l-scale description of the entraining solvent flo
field, such as that determined by an electrical resistance
log @12,13,21,23# for fluid motion animated by a Darcy-scal
pressure gradient;~ii ! the l-scale solute transport paramete
namely, the mean, interstitial-level particle velocity vect
and diffusivity ~dispersivity! dyadic prevailing within the in-
dividual channels of the network; and~iii ! the selection of a
so-called ‘‘mixing’’ rule characterizing the choice of solu
intersectional exiting protocol from the channel junctio
wherein thel-scale channel contents coalesce.

Disagreement exists in the network modeling literatu
concerning delineation of thel-scale~effective! intrachannel
transport processes, with existing models employing eit
molecular properties@16,27,34# or effective Taylor-Aris dis-
persion properties@17,18,20,28,29,33#. As such, it behooves
us to amplify, during the course of the subsequent analy
the relationship existing between the effective intrachan
solute velocity and diffusivity~dispersivity! and the compa-
rable pointwise particle velocity vector and molecular diff
sivity dyadic appearing in the continuous scheme. The la
pair of microtransport parameters,U(r ) and D(r ), are, in
principle, exactly expressible functionally in terms of th
continuousl-scale local particle position vectorr within the
repetitive unit cell. In contrast, because of their coarser d
crete l-scale nature, the effective channel transport para
eters,U( j ) and D( j ), cannot be known exactly owing to
uncertainty existing in the instantaneous local positionr of
the particle within channelj, arising from the stochastic na
ture of the molecular diffusive transport processes. For
ample, the transport of an entrained~point-size! particle by a
parabolic Poiseuille flow field may take place entirely alo
the channel center, resulting thereby in a mean channel
locity significantly greater than that for a particle movin
proximate to the channel walls. Such effects become m
pronounced in the context of finite-size particles, wher
hydrodynamic wall effects induced by the finite size of t
particles relative to the channel width@37# must be incorpo-
rated into the analysis@38#. This is especially true in the cas
of force-driven particle animation or electro-osmotic flo
@41#, where wall effects constitute theonly mechanism en-
abling particle vector separation. The possibility that a p
ticle will statistically sample the entire cross-sectional area
a given channel before exiting that channel, as required
3-2
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GENERALIZED TAYLOR-ARIS DISPERSION IN . . . PHYSICAL REVIEW E65 021103
Taylor-Aris theory to be applicable, necessarily decrea
monotonically with the channel’s longitudinal dimension
increasing thereby the likelihood of the particle spendin
statistically inordinate time resident on a given streamline
too long in a region of unchanging mobility in the finite-siz
particle case. Even more tenuous than in the preceding
of modeling the solute velocity in a channel is the issue
properly defining the channel dispersivity, given that t
presence of convection gives rise to a Taylor contribution
that effective diffusivity @42#, which formula, however, is
strictly valid only for relatively long tubes, or, more pre
cisely, for large aspect ratio channels.

A comprehensive study@30# incorporating various effec
tive transport models, both theoretical and semiempiri
found the ensuingL-scale macrotransport parameters to
only weakly dependent upon the choice of transport mo
but strongly dependent upon the connectivity of the netwo
In spite of this potentially weak dependence in certain c
cumstances, it nevertheless behooves us to formulate rat
definitions for the effective channel transport parameters,
pecially in the asymptotic limit~cf. Sec. V A 1!.

Numerous models also exist for quantifying the solu
‘‘mixing’’ processes occurring at the channel junctions. U
like the mean intrachannel transport parameters, the mix
rule, serving to quantify the probability of the particle exitin
the intersection through a specified channel among th
available, is less equivocal, being governed by the physic
the device. Most widely used is the ‘‘perfect mixing’’ hy
pothesis @14,16–19,28–30,33,34#, wherein no bias is as
sumed to exist regarding the choice of intersectional eg
channel, owing either to purely convective solute transp
~mixing-tank model! in the absence of molecular diffusion
or extremely vigorous molecular diffusion—in probabilist
terms, effectively a Markov process@32#. At large Peclet
numbers~convection dominated solute transport!, the choice
of intersection solute egress channel is typically assume
be simply proportional to the flow rate prevailing within th
channel@24,25,32,33#. At small Péclet numbers, where the
transport process is diffusion dominated, steric argume
@33# have been invoked to argue that the choice of inters
tion egress channel is proportional to that channel’s cro
sectional area, while for very small intersections it has a
been assumed@27# that no streamwise molecular diffusio
occurs.

Each of the preceding mixing rules represent approxim
tions, albeit pragmatically useful ones, of the exact sol
transport processes occurring at the channel intersection
more precise determination of egress channel probabil
may be obtained from the exact solution of the prevail
continuous convective-diffusive transport problem, includi
proper accountings of the detailed fluid flow field and p
ticle dynamics, e.g., hydrodynamic wall effects. The lat
scheme has been employed elsewhere for the analys
blood hematocrit flow through microvasculature@43#, as well
as for the Stokesian dynamics of fluid-particle-bed inter
tions in model porous media@44#.

No doubt exists that a continuous description of the ver
transport process, when compared with any of the propo
ad hocprobabilistic vertex mixing schemes, would furnis
02110
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more physically accurate results within this discrete theo
However, given the computational resources required
more precisely quantify the detailed intersectional transp
processes, it is only incrementally more difficult to solve t
original, classical continuous Taylor-Aris dispersion proble
@1# itself. Consequently, practical applications of our discr
Taylor-Aris dispersion theory suggest choosing an appro
ate vertex mixing rule in order to approximate the true phy
cal processes prevailing therein—rather than attempting
solve the exactly formulated microscale problem posed at
channel intersections.

Having established a particular physical model for t
unit cell-level transport processes, a detailed picture of
global particle transport process is generated from such m
els typically either by: ~i! a Monte Carlo scenario
@20,27,30,32,33# whereby single-particle~or ‘‘plume’’ ! trans-
port through the network is statistically simulated numero
times; or ~ii ! a Laplace transform technique@16–
18,20,28,29# wherein a unidirectional, unsteady convectio
diffusion equation is solved for the continuous solute co
centration distribution prevailing in each discrete channe
pore within the entire network. Continuity of these conce
trations at all channel intersections in the network, toget
with an ~arbitrary! choice of initial solute injection point
within the network as a whole, jointly with conditions at th
~finite! boundaries~if any! of the network, provide sufficien
conditions in such models for uniquely specifying the over
solute transport problem. The macroscale transport par
eters Ū* and D̄* , globally characterizing the process, a
then calculated, either from moments of the simulation s
tistics or from the convective-diffusive solute concentrati
profile ~cf. Sec. III D!.

Proponents@16–18,20# of the Laplace transform tech
nique argue that their scheme constitutes an ‘‘exact’’ meth
for ascertaining these macrotransport parameters, having
sumably solved for the complete unsteady microscale c
centration field extant within each pore of the network fo
lowing solute injection. As discussed above, some degre
arbitrariness invariably exists as to the applicability
Taylor-Aris l-scale dispersivity arguments for calculating t
effective particle velocity and diffusivity prevailing over th
length of a single channel, a parameter strictly valid only
an L-scale asymptotic sense@1,17,45#. For asymptotically
long times, our discrete Taylor-Aris dispersion theory, to
derived, represents a much more compact computatio
scheme for calculating theL-scale parametersŪ* and D̄*
when compared with such Laplace transform techniqu
since its use does not necessitate initially obtaining the
haustively detailed time-dependent solution of the unde
ing unsteady convection-diffusion equations for each pore
the network prerequisite to calculating these paramet
Moreover, our scheme provides,inter alia, rigorous criteria
governing use of the single channel,l-scale Taylor-Aris pa-
rameters entering into the subsequentL-scale calculation of
Ū* and D̄* . Indeed, the ability to quantitatively obtain th
macroscopicL-scale transport properties of a solute molec
traversing the medium, without the preliminary necessity
solving for the entire exact, time-and initial condition
3-3
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KEVIN D. DORFMAN AND HOWARD BRENNER PHYSICAL REVIEW E65 021103
dependent solute concentration field, constitutes theraison
d’être underlying macrotransport theory@1#.

In this light, we proceed in Sec. II to outline a form
mechanism for converting the fundamental continuo
theory for such devices into a more tractable graphical n
work of the phenomena, continuing in Sec. III with the de
vation of a detailed conservation equation for the conditio
solute positional and temporal probability density on t
graph. Sections IV and V furnish a method-of-mome
analysis for the graphical representation of the periodic m
dium, whereby formulas are derived enabling computation
the respectiveL-scale mean velocity vector and dispersiv
dyadic parametersŪ* and D̄* from the prescribedl-scale
data. As illustrative examples, transport in serpentine mic
fluidic channels and ‘‘simple’’ networks are examined in Se
VI. We conclude in Sec. VII with a comparison between t
respective continuous and discrete macrotransport theo
including recommendations for applications of the latter.

II. GEOMETRICAL DESCRIPTION

The devices encompassed by our analysis consis
strongly connected, spatially periodic networks of interse
ing channels embedded within a three-dimensional spac
depicted in Fig. 1@46#. By ‘‘strongly connected’’ is meant
that each fluid point in the medium is accessible to a so
molecule from every other point in the medium. Transp
through networks that are not strongly connected may
characterized within the framework of the present scheme
considering the individual Taylor-Aris dispersion process
occurring within each of the separately strongly connec
networks which, together, collectively comprise the comp
ite medium@14# as a whole. The spatial periodicity of th
network is reflected in the existence of a primitive~parallel-
epipedal or, if need be, curvilinear! unit cell repeated indefi-
nitely in all directions. The entire composite medium may
imagined as constructed by translating this primitive unit c
~together with its contents! parallel to itself through a trio of

FIG. 1. Schematic of a spatially periodic medium, with solu
particle animation effected by the application of an externally
plied vector forceF. The repetitive unit cell is enclosed in th
dashed box, with the subsequent discretization of the continu
unit cell regions indicated by the trio of shaded regions labeleda, b,
andc. Lattice vectorsl1 and l2 are indicated.
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basic lattice vectors (l1 , l2 , l3) satisfying the requiremen
that their scalar triple product,l1• l23 l35t0 , is equal to the
superficial volumet0 of the cell @13#.

The position of a given cell, say, theI th cell, within the
three-dimensional space can be identified by specifying
discreteL-scale position vectorRI of, say, the centroid of the
cell relative to an origin,RI0

50, at the centroid of the zeroth
cell

RI5I 1l11I 2l21I 3l3 , ~2.1!

with (I 1 , I 2 , I 3) a triplet of positive or negative integers
including zero. The location of theI th cell can also be iden
tified by this triplet of integersI[(I 1 , I 2 , I 3), itself regarded
as a vector or matrixI . The exact continuousl % L-scale po-
sition vectorR, specifying the location of a point within the
three-dimensional space, may be represented by the m
~discrete, continuous! vector pair (RI ,r )[R, where the
l-scale continuous vectorr is the local position vector of a
point within any unit cell with respect to that particular cell
centroid. This corresponds to the standard decomposi
employed in classical generalized Taylor dispersion the
for spatially periodic media@1,36#, in the sense that the sub
sequently definedl % L-scale continuous fields~velocity
field, solute concentration field, etc.! are regarded as bein
exactly defined at each and every fluid pointR of the R
[(RI ,r )-space encompassing the entire interstitial fluid
gion ~at each instant in time!. This detailed description quan
tifies the exact, or ‘‘continuous,’’ case, in contrast with th
subsequent graph-theoretical network treatment~the ‘‘dis-
crete’’ case!, where fields will be defined only at the discre
points in the subsequently definedl % L-scale discrete
I[(I ,i ) space, wherei 5(1,2,...,n) identifies one of then
channel intersectional subvolume elements within a unit c

A. The basic graph

Significant computational advantages accrue to conv
ing the classical@1,36# continuousR-space decomposition o
the spatially periodic medium into a discreteI-space graphi-
cal representation. The internal configuration of each c
consists of a finite number of intersecting channels, som
which are wholly contained within the unit cell~such as the
channel connectinga to b in thex direction of Fig. 1!, others
being intersected by the unit-cell boundaries~such as the
channel connectingb to a8 in the x direction of Fig. 1!. The
finite basic graph@13# Gb is then constructed from the coo
dination of the channels and their intersections, with themb
channels in the unit cell comprising the edge set,j PEGb ,
whereas thenb intersections of the latter edges comprise t
vertex set,i PVGb . By virtue of the periodicity of the net-
work, there exists within the unit cell two equivalent~ho-
mologous! channels intersected by the unit-cell bounda
say, one edge with initial vertex ati in cell I with terminal
vertex ati 8 in cell I 8, and a second edge with initial vertex
i in cell I 9 and terminal vertex ati 8 in cell I . By convention,
we retain only those edges which are directed into the u
cell ~with the direction specified forthwith!, assigning them
the ‘‘macroscopic’’ jump vector

-

us
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GENERALIZED TAYLOR-ARIS DISPERSION IN . . . PHYSICAL REVIEW E65 021103
R~ j ! 5
def.

RI2RI8. ~2.2!

The edge set is characterized completely by each ed
respective orientation and geometry. The orientation of
edge set, which provides an unambiguous definition of
incidence matrix@cf. Eq. ~2.6!#, as well as classifying the
basic graph as a directed graph@47#, is chosen such that th
scalar convective transport coefficientc( j ) is non-negative
@cf. Eq. ~3.5!# @48#. The latter criterion is satisfied by consid
ering the meanl-scale convective velocitŷUC& j in edge j
imparted to the particle by the entraining fluid flow in th
channel, together with the meanl-scale particle velocity
^UF& j5^M & j•F imparted by the action of an externally a
plied force F acting on the particle in edgej. Here, ^M & j
denotes the meanl-scale solute mobility dyadic in channelj.
As in classical macrotransport theory@1#, the meanl-scale
particle velocity^U& j5^UC& j1^UF& j within the edge must
be unidirectional, either proceeding spatially from the reg
represented by vertexi to i 8, or vice versa. Consequently, th
edge is directed such that the edge unit vectore( j ), defined
so as to point from the initial to the terminal vertex, is coli
ear with the mean velocity vector^U& j in that edge.

While many problems of interest involve channels of u
form cross-sectional configuration, the generic formulat
presented herein is not similarly restricted. Regardless
channel tortuosity, it is possible to unequivocally define b
a channel volumeve( j ), and channel lengthl ( j ), the latter
being equal to the distance between the adjacent inter
tions corresponding to the initial and terminal vertices
edgej. For subsequent calculations requiring a flux per u
area, we define the effective cross-sectional areaA( j ) of a
channel as the ratio of its volume to length

A~ j ! 5
def.ve~ j !

l ~ j !
. ~2.3!

So as to render explicit the preceding discretizat
scheme, Fig. 2 depicts the basic graph derived from the c
tinuous medium depicted in Fig. 1, with homologous vertic
~i.e., identical vertices present on the basic graph in an a
cent unit cell! denoted by affixing a prime, e.g.,a anda8.

The spatially periodic structure of the composite medi
is reflected in the global graph@13# Gg , which is defined by
basic vertices$v i51< i<nb% together with the transforma
tion

L5$L1v i ; 1< i<nb%, ~2.4!

whereL is the simple lattice corresponding to the base v
tors (l1 , l2 , l3) andL is the derived lattice. Analogous to th
continuousl % L-scaleR-space description~2.1!, the discrete
l % L-scale I-space global graph is formed by translati
through the simple lattice.

B. The local graph

Although the union of the basic graphGb and the trans-
formation of Eq. ~2.4! constitutes a complete geometric
discretization of the continuous spatially periodic netwo
02110
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use of the basic graph proves cumbersome in applicati
owing to superfluous information implicitly embedded in th
homologous vertices. Combining homologous vertices a
contracting the additional edges between them furnishes
local graph@13# G l , which will be utilized for all subsequen
asymptotic calculations.

Upon contraction, the local graph containsn<nb vertices
and m<mb directed edges. Edges connecting homologo
vertices, say,i and i 8, result in a loop, rendering the loca
graph nonsimple. In exchange for this nonsimplicity, the
cal graph is independent of the particular configuration
voked for the basic unit cell@13#, as well as requiring mini-
mal computational effort in the subsequent dispers
calculation @49#. For each of then vertices i on the local
graph, assign to the setj PV1( i ) the subset of those edgesj
with terminal vertexi, and to the set of edgesj PV2( i ) the
subset of those edgesj with initial vertex i. From the basic
graph of Fig. 2, the latter homologous contraction proc
furnishes the local graph of Fig. 3, where, for examp
V1(c)5$ j 53,5% and V2(c)5$ j 54,5%, with the loop ob-
viously a member of both sets.

The unit-cell volume is subdivided in a discrete mann
on the local graph to its vertices so as to facilitate exposit
of the subsequent ‘‘exactly’’ posed description of the solu
transport process@cf. Eq. ~3.4!# @50#. The volumev( i ) of a
vertex on the local graph is then defined as being equal to
volumev i( i ) of its channel intersection plus half the volum
of all channels incident to that intersection

v~ i ! 5
def.

v i~ i !1 1
2 (

j PV1~ i !

ve~ j !1 1
2 (

j PV2~ i !

ve~ j !. ~2.5!

FIG. 2. Basic graph for the spatially periodic medium of Fig.
with the unit cell enclosed within the box. The five different typ
of channels appearing in Fig. 1 are indicated by edge numbers
5. Homologous vertices existing outside the unit cell are deno
with a prime affix. Edges exiting the unit cell~and their associated
homologous vertices!, not otherwise included in the basic graph, a
indicated by the dashed lines. A representative edge orientation
tor e(1), as well as the macroscopic jump vectors, are depicte
Macroscopic jump vectors for edges wholly contained within t
unit cell are zero, i.e.,R(1)5R(3)50.
3-5
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KEVIN D. DORFMAN AND HOWARD BRENNER PHYSICAL REVIEW E65 021103
In addition to assigning the physical volume to a giv
vertex, we assign the particle’s local continuous positionr to
the discrete location of vertexi situated, say, at the centroi
of the subvolume elementv( i ), whenever the particle reside
within v( i ). Consequently, the continuousR-space particle
location vector pair (RI,r ) finds its discrete, coarse-graine
I-space counterpart in the discrete pair (I ,i ), the latter cor-
responding to the particle being located within the volu
assigned to vertexi in the unit cell whose centroid is situate
at the discrete positionI . To complete this discretization
define thel-scale discrete position vectorr i so as to point
from the centroid of cellI to the centroid of the unit-cel
subvolume elementv( i ) identified by the indexi.

C. Pertinent elements of graph theory

In graph-theoretical terms@47# the local graph is a finite-
directed graph, composed of them member edge se
j PEG l and then member vertex seti PVG l , thereby per-
mitting the introduction of then3m incidence matrixDi j
@51#

Di j 5
def.H 1 if vertex i is the terminal vertex of edgej ,

21 if vertex i is the initial vertex of edgej ,
0 otherwise.

~2.6!

The rank of the incidence matrix isn21, owing to the con-
nectivity of the graph. It will also prove convenient to d
compose the incidence matrix into its positive and nega
components,

Di j 5P i j
~1 !2P i j

~2 ! , ~2.7!

where the nonzero entries inP i j
(1) are the positive element

of Di j , and the nonzero entries inP i j
(2) are the absolute

values of the negative elements ofDi j .

FIG. 3. Local graph constructed from the basic graph of Fig
by combining all homologous vertices and contracting the ed
between them. The connectivity betweenc-type vertices results in a
loop in the local graph, rendering it nonsimple. The local~x,y! co-
ordinate system is no longer necessary, having been embedd
the macroscopic jump vectorsR( j ) and the orientations of the
edges.
02110
e

e

In what follows, matrix equations for the node-based m
crotransport ‘‘fields’’ will be formulated in the cocycle spac
Briefly, the cocycle space is constructed by partitioning
vertex space into two connected subgraphs:VG
5V1GøV2G. A cocycle H consists of those edges~cuts!
with one vertex in subgraphV1 and a second vertex in sub
graphV2 . The vectorjH(ej ) associated with cocycleH may
be defined as being positive for, say, edges terminating inV1
@52#

jH~ej ! 5
def.H 1 if ejPH and its terminal vertex is inV1 ,

21 if ejPH and its initial vertex is inV1,
0 otherwise.

~2.8!

The n21 cocycles forming the basis of the cocycle spa
may then be collected into them3(n21) cocycle matrixK .
An alternative, more convenient method for constructingK
involves removing the row of the incidence matrixD that
corresponds to the vertex not appearing as a cut set in
fundamental basis of the cocycle space, and then transpo
the result. The latter technique, which preserves the struc
of the incidence matrix, will be employed in what follow
The cocycle matrix, being of rankn21, furnishes an alter-
native method to that of the incidence matrix for incorpor
ing the graph connectivity.

III. ‘‘EXACTLY’’ POSED „DISCRETE… PROBLEM

The present section furnishes the conservation equa
governing the phenomenological, lumped-parameter desc
tion of the solute transport processes occurring at each n
of the global graph. We refer to this node-based conserva
equation as constituting an ‘‘exactly’’ posed network pro
lem, in the sense that no finer-scale model is contemplate
the unsteady-state transport process undergone by
Brownian solute particle, except, perhaps, for estimating
effective edge transport coefficients in certain limiting c
cumstances. The subsequent conservation equation re
sents the discrete counterpart of the continuousl % L-scale
convective-diffusive equation@cf. Eq. ~3.7!# @1#, the latter of
which serves as the starting point for the method-
moments homogenization scheme in classical general
Taylor-Aris dispersion analyses of macrotransport pheno
ena.

A. Conditional probability density on the global graph

Consider the conditional probability densit
P(I , i , tuI0 , i 0 , t0) of the Brownian particle being located i
cell I within the unit-cell subvolume element represented
vertex i at timet, given its initial introduction at timet0 into
the network in cellI0 at the vertexi 0 @53#. Given this impul-
sive introduction of the particle, and choosingt050 without
any loss of generality, conservation of probability dens
requires thatP satisfy the normalization condition

(
Gg

v~ i !P~ I , i , tuI0 , i 0!5H 0 ~ t<0!,

1 ~ t.0!,
~3.1!
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reflecting the fact that the probability is unity of the partic
being located somewhere within the infinitely extended n
work at any time following its initial introduction.

Since the spatially periodic network is assumed to be g
erated by translational displacements of the base lattice
tors, or equivalently of the simple lattice@13#, it is assumed
that the attenuation ofP with distance from the point o
introduction of the particle into the network is sufficient
rapid to insure thatP→0 as uI2I0u→`. Indeed, in order
that the summations involved in forming the local mome
of P @cf. Eq. ~4.1!# converge, as in the continuous case@1#, it
is further assumed that all moments of the probability den
decay faster than algebraically with distance, such that

~RI2RI0
!mP→0 as uI2I0u→` ~m50,1,2,...!,

~3.2!

where, generically, for any vectorV, the polyadic
Vm5VV¯V ~m times! is anm-adic.

Of course, real systems are of bounded extent. Co
quently, the analysis pursued herein is expected to be val
the limit where the numberN of unit cells in the actual de
vice is large:N@1. The latter condition is equivalent to tha
employed previously in the continuous modeling of micr
patterned devices@2#, where the infinite system analysis wa
expected to be valid in the limitl /L!1, with l a character-
istic dimension of the unit cell andL the characteristic size o
the finite macroscopic system as a whole.

As is true for both continuous@1# and discrete@14# un-
bounded models of spatially periodic systems,P is depen-
dent only upon the global displacementI2I0 ~or, equiva-
lently, RI2RI0

! of the particle from its initial position, rathe
than separately upon both its current and initial positionI
and I0 , respectively. This fact is equivalent in its cons
quences to translating the arbitrarily positioned origin, si
ated atR50, to a origin, situated at the pointR5RI0

. As

such, we can arbitrarily chooseI050 and RI0
50 ~so thatI

and RI are now measured relative to a different origin l
cated within the unit cell into which the particle was orig
nally introduced into the system!. Consequently,P possesses
the canonical functional form

P[P~ I , i , tu i 0!. ~3.3!

B. Microscale transport: Effective properties and mixing rule

A particle navigating the network is assumed to transl
through the edges via convection~either ‘‘piggyback’’ con-
vection entrained in a flowing fluid or by the action of a
externally imposed force field, such as an electric field,
both!, as well as by Brownian motion. In constructing th
basic graph, the direction of the mean convective trans
occurring within the channel, which must of necessity
unidirectional, was embedded in the edge unit vectore( j ).
Consequently, transport within the edge is fully characteri
by the edge velocity vector,U( j )e( j ), together with the edge
diffusivity dyadic,D( j )e( j )e( j ).

For circumstances in which net solvent motion aris
from a Darcy-scale~macroscopic! pressure gradient, th
02110
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graph-theoretical techniques of Adler and Brenner@13# may
be applied directly to the present graphical framework. A
ternatively, other network resistance models@12,21,23# may
be adopted. Such techniques furnish a coarse-grained
proach for calculating the mean fluid velocity prevailing
each of the edges, without requiring detailed knowledge
the finer-scale,r -dependent velocity field existing therein
Although the meansolventvelocity may thereby be deter
mined unambiguously, establishing the meansoluteparticle
velocity U( j ) and diffusivity D( j ) is considerably more
equivocal, as addressed in the Introduction. Within the c
text of an ‘‘exact’’ microscale description of the solute tran
port process@cf. Eq. ~3.4!#, the edge transport paramete
must then be classified as stochastic variables@54#. It is im-
portant, nevertheless, to recognize that despite its stoch
nature, the edge transport process is rendered amenab
rational analysis in the asymptotic Taylor-Aris dispersi
limit. Consequently, we will proceed in our ‘‘exact’’ analys
using the equivocal, stochastic quantitiesU( j ) and D( j ),
reserving their unambiguous,asymptoticdefinitions for a
later stage of the analysis~cf. Sec. V A 1!.

The stochastic nature of our ‘‘exactly’’ posed netwo
problem is augmented by the mixing processes occurrin
those regions situated at the channel intersections@55#. Ex-
plicitly, when the particle is situated in the channel interse
tion represented by nodei, the role of the mixing rule is to
furnish the probability of egress channel~edge! j for the par-
ticle as it exits intersectioni @and, consequently, exits the un
cell subvolumev( i ) via edgej#. So as to formulate a generi
scheme, applicable to all such network problems, one m
envision a set of stochastic vertex-edge probability variab
0<K( i , j )<1, characterizing the probability of the partic
entering or exiting the channel represented by edgej from
the channel intersection represented by vertexi @56#. How-
ever, such a set of variables overspecifies the problem, s
the graphical network discretization of the real medium e
tailed assigning all of the physical volume to the nodes. C
sequently, the constraint of zero accumulation of probabi
density within the volumeless edges is enforced by rede
ing the mixed vertex-edge parameterK as an edge-base
parameter,K( i , j )[K( j ). For definiteness, we choose th
value ofK( j ) to correspond to the probability of the partic
entering the edge at its initial vertex~i.e., the probability of
exiting the vertex in edgej!, thereby providing internal con
sistency with the various mixing-rule schemes enumerate
the Introduction.

The edge probability parameterK( j ) possesses an alte
nate interpretation as a probabilistic ‘‘check valve’’ for th
vertex. The extreme valueK( j )50 corresponds to an edg
that is inaccessible to the Brownian particle—say, a cond
of circular cross section whose radius is less than that of
particle ~the latter assumed rigid and spherical!. Conversely,
the extreme valueK( j )51 corresponds to a channel int
whom solute entry proceeds without bias. It follows that t
special valueK( j )51 for all edgesj reproduces the earlie
perfect mixing model of Adler and Brenner@14#.

C. Nodal conservation equation

Given the preceding identifications of the local transp
processes occurring within the edges and vertices, the
3-7
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KEVIN D. DORFMAN AND HOWARD BRENNER PHYSICAL REVIEW E65 021103
lowing ‘‘exact’’ discrete l % L-scale conservation equatio
governs the conditional probability density that the parti
instantaneously, at timet, resides on the global graph at th
location (I ,i )

v~ i !
dP~ I ,i !

dt
5d~ I !d~ i ,i 0!d~ t !1 (

j PV1~ i !
j 5$ i 8,i %

c~ j !P~ I 8, i 8!

1d~ j !@P~ I 8, i 8!2P~ I , i !#

2 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !P~ I , i !

1d~ j !@P~ I , i !2P~ I 8, i 8!#, ~3.4!

with d(I ) and d( i ,i 0) Kronecker delta functions, andd(t)
the Dirac delta function. For notational simplicity, the e
plicit dependence ofP upon both the timet and the initial
vertex locationi 0 has been suppressed in its argument. T
summation indexj PV1( i ) ( j 5$ i 8,i %) serves to indicate
those edges which enter vertexi from vertex i 8. Likewise,
j PV2( i ) ( j 5$ i ,i 8%) indicates edges exiting vertexi and
proceeding to vertexi 8. The non-negative edged-based p
rametersc( j ) and d( j ) appearing above correspond to t
respective magnitudes of the convective and diffusive ‘‘vo
metric flow rates’’ prevailing in edgej @57#

c~ j ! 5
def.

K~ j !U~ j !A~ j !, d~ j ! 5
def.K~ j !D~ j !A~ j !

l ~ j !
. ~3.5!

The equality,

(
j PV1~ i !
j 5$ i 8,i %

c~ j !5 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !, ~3.6!

while always true for a solute molecule entrained in a flo
ing fluid with perfect mixing at intersectioni @13#, does not
necessarily obtain for imperfect mixing or purely forc
driven motion. In the former case, the solute mixing b
embodied in the parameterK( j ) may negate the equalit
~3.6!; in the latter case, even for perfect mixing and infin
tesimally small particles, wherein bothK and the~scalar!
mobility M are invariant to choice of edgej, the ‘‘volumetric
flow rate’’ is not necessarily conserved at an intersectioi,
say, at which an expansion in channel size occurs, such
A( j ) then differs between the two collinear edges inciden
vertex i.

The preceding exact discretel % L-scale vertex conserva
tion equation, akin to master equations@58# prevalent in sta-
tistical physics, is considerably moread hocin nature than is
its continuous counterpart@cf. Eq. ~3.7!#, thereby warranting
further elaboration of the interpretation ascribed to Eq.~3.4!.
The left-hand side~LHS! represents the accumulation
probability density within the nodal volume given by E
~2.5!. The first term on the right-hand side~RHS! represents
the unit impulse addition at timet050 of solute into unit-cell
I050 within the volume assigned to vertexi 0 . The remain-
02110
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ing terms, respectively, account for the mechanisms wher
the particle enters and exits the volume assigned to ve
(I ,i ). Explicitly, convection through the edges transports
particle from the vertex (I 8,i 8) to the vertex (I ,i ), or,
equivalently, removes the particle from vertex (I ,i ). Terms
involving differences,P(I 8,i 8)2P(I ,i ), in conditional prob-
ability densities between connected vertices account for
assumed Fickian-type diffusional process occurring as a c
sequence of a presumed linear probability gradient exis
between the two vertices, the diffusion length scale hav
been explicitly incorporateda priori into the edge transpor
parameterd( j ).

The intractability of the stochastic difference Eq.~3.4! for
the graphical network points up a striking contrast betwe
the present discrete formulation and its continuous ana
@1#. The comparable exact continuousl % L-scale conserva-
tion counterpart of Eq.~3.4!, governing the conditional prob
ability density P(R,tuR0)[P(RI ,r ,tur0), possesses the
form @1#

]P

]t
1“•@U~r !P2D~r !•“P#5d~RI !d~r2r0!d~ t !,

~3.7!

whereU(r ) and D(r ) are, respectively, the exactly define
continuousl-scale particle velocity vector and molecular d
fusivity dyadic. This latter equation possesses a well-defi
mathematical and physical structure, and may be solved
least in principle, subject to requiring an appropriate spa
rate of attenuation ofP with increasing distance from the ce
RI0

50 at which the particle was initially introduced. In con
trast, the graph-theoretical framework proposed herein p
sesses no exactly solvable discretel % L-scale formulation,
except for circumstances wherein the respective mean e
transport and mixing rules are well defined, i.e., determin
tic.

D. Lagrangian definition of the macrotransport parameters
Ū* and D̄*

In spite of the stochastic nature of Eq.~3.4!, its solution at
every node of the global graph furnishes, in principle, t
complete set of probability densitiesP(I , i , tu i 0) on the glo-
bal graph. Withl the characteristic unit-cell linear dimensio
andDm the characteristic Brownian particle molecular diff
sivity, the asymptotic definitions of the macrotransport p
rametersŪ* and D̄* become valid in the long-time limit,
t@ l 2/Dm @1#. Explicitly, with RI[RI1r i the location of the
centroid of vertexi in unit-cell I within which the particle is
instantaneously located at timet, the solution of Eq.~3.4! for
P permits calculation of the mean particle velocity vectorŪ*
as the average displacement of the Brownian particle w
respect to its initial positionRI0

[01r i 0
@1#:

^RI2r i 0
&5^RI&2r i 0

'Ū* t, ~3.8!

with angular brackets defined below in Eq.~3.10!. Similarly
calculation of the dispersivity dyadicD̄* follows from
3-8
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knowledge of the mean-squared vector displacement of
Brownian particle from its mean position̂RI& at time t @1#:

^@RI2^RI&#@RI2^RI&#&'2D̄* t. ~3.9!

The average values appearing in these expressions repr
summations over the global graph

^RI&5(
Gg

~RI1r i !P~ I ,i ,tu i 0!. ~3.10!

Since the decay of the transient solution of Eq.~3.4! is ex-
ponential in time@1#, the average values defined above b
come asymptotically independent ofi 0 ~and, equivalently,
r i 0

!. This tendency of the particle to lose ‘‘memory’’ of th

position i 0 of its initial local ~vertex! introduction into the
network proves fundamental in the asymptotic theory to f
low ~cf. Sec. V A!.

IV. MOMENT-MATCHING SCHEME

Calculation of the macrotransport parametersŪ* andD̄*
from the present network model derives via a Taylor-Ar
like moment-matching scheme for the asymptotic global m
ments of the probability density, as detailed in Sec. V. A
prelude to this, we invoke the generic scheme employed
Adler and Brenner@14# to calculate these moments prior
effecting their asymptotic expansions, including appropri
modifications allowing for the incorporation of molecul
diffusion effects into the analysis.

A. Local moments

Define themth-local moment (m50, 1, 2,...) of the con-
ditional probability density as them-adic @59#,

Pm~ i ,tut0! 5
def.

(
I

~RI !
mP~ I , i , tu i 0!, ~4.1!

the indicated summation being defined as the triple sum o
all unit-cell indices
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(
I

5
def.

(
I 152`

`

(
I 252`

`

(
I 352`

`

. ~4.2!

The differential equation governingPm is formed by mul-
tiplying the node conservation equation~3.4! by the quantity
(RI)

m[RIRI¯RI ~m times!, and subsequently performin
the triple summation~4.2!, thereby furnishing the following
ordinary differential equation forPm( i ,tu i 0):

v~ i !
dPm~ i ,tu i 0!

dt

5d~ i ,i 0!d~ t !d~m,0!1 (
j PV1~ i !
j 5$ i 8,i %

@c~ j !1d~ j !#

3F(
I

~RI !
mP~ I 8, i 8, tu i 0!G2 (

j PV1~ i !
j 5$ i 8,i %

d~ j !Pm~ i ,tu i 0!

2 (
j PV2~ i !
j 5$ i ,i 8%

@c~ j !1d~ j !#Pm~ i ,tu i 0!

1 (
j PV2~ i !
j 5$ i ,i 8%

d~ j !F(
I

~RI !
mP~ I 8, i 8, tu i 0!G , ~4.3!

whered(m,0) is the Kronecker delta function. Whereas t
ordinary differential equation governing the evolution ofP
itself on the global graph requires detailed information
garding the behavior ofP throughout the entire infinite net
work, the solution of the governing equations forPm is con-
tained wholly within the local graphG l .

Evaluation of sums involving terms of the typ
(RI)

mP(I 8, i 8, tu i 0) appearing in Eq.~4.3! may be effected
by adding and subtractingRI8 , as follows@14#:

RI5~RI2RI8!1RI85R~ j !1RI8 , ~4.4!

whereupon the first few moments are found to obey the
lowing sequence of recurrence relations:
v~ i !
dP0~ i , tu i 0!

dt
5d~ i ,i 0!d~ t !1 (

j PV1~ i !
j 5$ i 8,i %

c~ j !P0~ i 8, tu i 0!1d~ j !@P0~ i 8, tu i 0!2P0~ i , tu i 0!#

2 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !P0~ i , tu i 0!1d~ j !@P0~ i , tu i 0!2P0~ i 8, tu i 0!#, ~4.5!

v~ i !
dP1~ i , tu i 0!

dt
5 (

j PV1~ i !
j 5$ i 8,i !%

c~ j !@R~ j !P0~ i 8, tu i 0!1P1~ i 8, tu i 0!#2 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !P1~ i ,tu i 0!1 (
j PV1~ i !
j 5$ i 8,i %

d~ j ![R~ j !P0~ i 8, tu i 0!

1P1~ i 8, tu i 0!2P1~ i , tu i 0#2 (
j PV2~ i !
j 5$ i ,i 8%

d~ j !@P1~ i , tu i 0!1P1~ i 8, tu i 0!1R~ j !P0~ i 8, tu i 0!#, ~4.6!
3-9
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v~ i !
dP2~ i , tu i 0!

dt
5 (

j PV1~ i !
j 5$ i 8,i %

c~ j !FR~ j !R~ j !P0~ i 8, tu i 0!1R~ j !P1~ i 8, tu i 0!

1P1~ i 8, tu i 0!R~ j !1P2~ i 8, tu i 0! G2 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !P2~ i ,tu i 0!

1 (
j PV1~ i !
j 5$ i 8,i %

d~ j !F R~ j !R~ j !P0~ i 8, tu i 0!1R~ j !P1~ i 8, tu i 0!

1P1~ i 8, tu i 0!R~ j !1P2~ i 8, tu i 0!2P2~ i , tu i 0!G
2 (

j PV2~ i !
j 5$ i ,i 8%

d~ j !F P2~ i , tu i 0!2R~ j !R~ j !P0~ i 8, tu i 0!

1R~ j !P1~ i 8, tu i 0!1P1~ i 8, tu i 0!R~ j !2P2~ i 8, tu i 0!G . ~4.7!
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The appearance of the macroscopic jump vector in the s
mations overj PV2( i ) in Eqs.~4.6!–~4.7! necessitates usin
2R( j ), rather thanR( j ), owing to the fact that the macro
scopic jump vector was previously defined in Eq.~2.2! for
edgesentering the unit cell, whereas that inj PV2( i ) in-
volves edgesexiting the unit cell. It is trivial to show that the
macroscopic jump vector for an edge exiting the unit cel
equal in magnitude and opposite in direction to that fo
homologous edge entering the unit cell; hence, the chang
algebraic sign. The latter issue, solely a by-product of inc
porating molecular diffusion into our model, did not arise
the prior, exclusively convective, solute transport model
Adler and Brenner@14#.

With the continued presence of the unit impulse, appe
ing in the differential equation for the zeroth-order mome
~4.5!, the conservation principle embodied in Eq.~3.1! for
the global graph adopts the form

(
i PVG l

v~ i !P0~ i ,tu i 0!51 ~ t.0!, ~4.8!

reflecting the unitary probability that the particle is locat
for all times after its introduction into the network withi
some unit-cell subvolume element. In contrast, higher-or
local moments are not similarly ‘‘conserved,’’ but rath
grow in time.

B. Global moments

Define the mth-global moment (m50, 1, 2,...) as the
m-adic,

Mm~ tu i 0! 5
def.

(
i PVG l

v~ i !Pm~ i , tu i 0!. ~4.9!
02110
-

s
a
in

r-

f

r-
t

r

In performing summations over the local graph, it is usefu
note that for a given nodal quantityf( i ) and edge quantity
e( j ), the strong connectivity of the graph furnishes the ide
tity

(
j PEG l

j PV1

e~ j !f~ i 8!5 (
j PEG l

j PV2

e~ j !f~ i !. ~4.10!

In expressing the latter, we have made use of the com
summation notation,

(
j PEG l

j PV1

5
def.

(
i PVG l

(
j PV1~ i !
j 5$ i 8,i %

, (
j PEG l

j PV2

5
def.

(
i PVG l

(
j PV2~ i !
j 5$ i ,i 8%

.

~4.11!

To arrive at the differential equations governing the glob
moments, differentiate Eq.~4.9! with respect to time and
substitute the resulting expression into the appropriate lo
moment from Eqs.~4.5!–~4.7!, using the identity~4.10!. For
the zeroth-order moment, this procedure yields

dM0

dt
5d~ t !. ~4.12!

The latter relation expresses the conservation of total pr
ability principle ~3.1!, which is directly verified by integrat-
ing Eq. ~4.12! to obtain

M05H 0 ~ t<0!,

1 ~ t.0!,
~4.13!

independently ofi 0 .
As regards higher-order moments, the first- and seco

order global moments obey the respective equations
dM1~ tu i 0!

dt
5 (

j PEG l

j PV1

@c~ j !1d~ j !#R~ j !P0~ i 8, tu i 0!2 (
j PEG l
j PV2

d~ j !R~ j !P0~ i , tu i 0!, ~4.14!

dM2~ tu i 0!

dt
5 (

j PEG l

j PV1

@c~ j !1d~ j !#FR~ j !R~ j !P0~ i 8, tu i 0!1R~ j !P1~ i 8, tu i 0!

1P1~ i 8, tu i 0!R~ j ! G
1 (

j PEG l

j PV2

d~ j !FR~ j !R~ j !P0~ i 8, tu i 0!2R~ j !P1~ i 8, tu i 0!

2P1~ i 8, tu i 0!R~ j ! G . ~4.15!
3-10
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V. ASYMPTOTIC LONG-TIME LIMITS

A. Zeroth-order moments

Asymptotic integration of the zeroth-order local mome
Eq. ~4.5! furnishes the long-time solution

P0~ i ,tu i 0!'P0
`~ i !1exp. ~5.1!

Here and hereafter, the generic symbol ‘‘exp’’ denotes ter
that are exponentially attenuated in time ast→`. As was
true of the continuous paradigm counterpartP0

`(r ) of Eq.
~5.1! @1#, the time-independent probability densityP0

`( i ) is
unconditional, whereby the probability of locating th
Brownian particle at vertexi becomes independent of th
initial local vertex i 0 of its introduction into the network
Substitution of Eq.~5.1! into both Eqs.~4.5! and ~4.8! fur-
nishes the following steady-state conservation equation
P0

`( i ):

(
j PV1~ i !
j 5$ i 8,i %

c~ j !P0
`~ i 8!1d~ j !@P0

`~ i 8!2P0
`~ i !#

2 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !P0
`~ i !1d~ j !@P0

`~ i !2P0
`~ i 8!#50,

~5.2!

supplemented by the requisite normalization condition,

(
i PVG l

v~ i !P0
`~ i !51. ~5.3!

The latter pair of equations governingP0
`( i ) constitute

the discrete analogs of the comparable continuous c
servation equation and normalization condition govern
the continuous intracellular fieldP0

`(r ) arising in classical
continuous macrotransport theory@1#. Moreover, in the
presence of vanishing molecular diffusivity and conserv
convective transport~3.6!, the probability density tends
towards the asymptotic valueP0

`( i )5V21 for all i, where

V5
def.

( i PEG l
v( i ) is the volume of the unit cell, in accord wit

the results of Adler and Brenner@14# for that case.

1. Edge transport properties in the long-time limit

The equivocal nature of the edge transport propert
which hindered a deterministic solution of the discrete ‘‘e
act’’ l % L-scale governing Eq.~3.4!, vanishes in the long-
time Taylor-Aris dispersion limit,t@ l 2/Dm . Explicitly, sat-
isfaction of the latter inequality assures that the Brown
particle has had the opportunity to sampleall locations i
within the unit cell numerous times, effectively achieving
equilibrium distributionP0

`( i ) with respect to its local posi
tion. Since the characteristic transverse linear dimensioH
of a channel is assumed to be less than the lengthl of the unit
cell ~often H! l !, the Brownian particle will, concomitantly
have had the opportunity to sample all channel locati
within each subvolume elementv( i ) of the cell numerous
02110
t

s

or

n-
g

d

s,
-

n

s

times. Consequently, achieving the asymptotic long-ti
limit necessitates thatt@H2/Dm , whereby the edge velocity
U( j ) and diffusivity D( j ) representmean l-scale solute
transport properties, arising from numerous samplings of
individual channels within a cell. The latter parameters m
be obtained either:~i! experimentally, using a single lon
channel so as to satisfy the inequalityt@H2/Dm ~where t
5 l /U is the nominal holdup time of the particle traversin
the channel of lengthl with mean velocityU! before the
particle exits the experimental channel; or~ii ! via classical
macrotransport theory@1#, in circumstances where hydrody
namic fluid-particle data exists.

As a further consequence of attaining this asympto
limit, the exit channel parameterK( j ) constitutes theequi-
librium distribution of edge choices. For diffusion dominate
transport processes, it is our contention that the hinde
diffusion partition coefficient@60# governs the probability of
the particle choosing differing intersectional egress chann
inasmuch as the partition coefficient is an equilibrium pro
erty. This coefficient may be derived rigorously, enabli
systematic incorporation of a vast array of effects, includ
steric and electrostatic hindrances@60#.

This ability to furnish formal definitions for the requisit
transport parameters in a rigorous, well-defined, and exp
mentally realizable long-time limit renders the present d
crete generalized Taylor-Aris dispersion scheme marke
less equivocal than previous network models@16–18,20,27–
30,33,34# of periodically configured systems.

2. Solution for P0
`
„ i … in the cocycle space

In order to facilitate a formal matrix solution for the prob
ability density, define then31 vectorP whose rows are the
probability densitiesP0

`( i ). In addition, define the following
pair of m3m diagonal matrices containing the effective ed
transport parameters@61#:

c5c~ j !d~ i , j !, d5d~ j !d~ i , j !, ~5.4!

whered( i , j ) is the Kronecker delta function. These defin
tions permit the conservation Eq.~5.2! to be represented in
the compact matrix form

D•@~c1d!•~P~2 !!†2d•~P~1 !!†#•P50, ~5.5!

with † the transposition operator. Clearly, Eq.~5.5! is satis-
fied by the trivial solutionP50 for the n vector elements
P0

`( i ), since the incidence matrixD is of rankn21. Indeed,
this rank-deficient property of the incidence matrix neces
tates retaining the probability density normalization con
tion ~3.1! in the asymptotic limit. To incorporate this norma
ization condition into the formal solution, define th
(n21)3n coefficient matrixA,

A 5
def.

K†"@~c1d!•~P~2 !!†2d•~P~1 !!†#, ~5.6!

as well as the 13n vector of the nodal volumes,
3-11
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v5
def.

v~ i !. ~5.7!

These permit the linearly independent, rankn matrix equa-
tion for the probability density to be expressed in the pa
tioned matrix form,

FAv G•P5F 0
1G . ~5.8!

B. First-order moments

1. Mean velocity vector Ū*

As in classical generalized Taylor-Aris dispersion theo
@1#, the mean particle velocity vector may be calculated fr
the following asymptotic expression derived from Eqs.~3.8!,
~3.10!, ~4.1!, and~4.9!:

Ū* 5 lim
t→`

dM1

dt
. ~5.9!

Substitution of Eq.~4.14! into the latter, together with use o
Eqs. ~4.10! and ~5.1!, enablesŪ* to be calculated from
knowledge ofP0

`( i ) via the following generic paradigmati
relation:

Ū* 5 (
j PEG l

j PV1

c~ j !R~ j !P0
`~ i 8!1d~ j !R~ j !@P0

`~ i 8!2P08~ i !#.

~5.10!

Upon settingd( j )50 and P0
`( i 8)5V21, the latter agrees

with the expression previously derived elsewhere@14# for the
case of purely convective solute transport.

2. Derivation of the B-equation

Assume, subject to a posteriori verification, an
asymptotic trial solution of the form

P1~ i , tu i 0!'P0
`~ i !@Ū* t1B~ i !#1exp, ~5.11!

with B( i ) a time- andi 0-independent vector to be dete
mined. Introduce Eqs.~5.1! and~5.11! into Eq. ~4.6!, subse-
quently canceling time-dependent terms with Eq.~5.2!, so as
to arrive at the following difference equation governing t
vectorB( i ) at each node on the local graph:

(
j PV1~ i !
j 5$ i 8,i %

c~ j !P0
`~ i 8!B~ i 8!1d~ j !@P0

`~ i 8!B~ i 8!2P0
`~ i !B~ i !#

2 (
j PV2~ i !
j 5$ i ,i 8%

c~ j !P0
`~ i !B~ i !

1d~ j !@P0
`~ i !B~ i !2P0

`~ i 8!B~ i 8!#

5v~ i !P0
`~ i !Ū* 2a~ i !, ~5.12!

with a( i ) the node-based vector
02110
-

a~ i !5 (
j PV1~ i !
j 5$ i 8,i %

@c~ j !1d~ j !#R~ j !P0
`~ i 8!

2 (
j PV2~ i !
j 5$ i ,i 8%

d~ j !R~ j !P0
`~ i 8!. ~5.13!

It is readily confirmed from Eqs.~5.2! and~5.12!, as was
true for both continuous@1# and nondiffusive discrete@14#
generalized Taylor-Aris modeling, that theB vector is
uniquely defined only to within an arbitrary additive consta
vector. Moreover, as in those earlier cases, the forcing fu
tion appearing on the RHS of Eq.~5.12! represents the dif-
ference between the mean and ‘‘local’’ vertex velocities. T
velocity disparity furnishes the physical mechanism unde
ing the origin of dispersion within the network. The time
and i 0-independence of the equation governingB( i ) ob-
served in Eq.~5.12! furnishesa posterioriverification of the
assumed trial solution~5.11! for P1 . This ‘‘transport equa-
tion’’ for the B field plays a fundamental role in subseque
dispersion calculations. Its solution within the cocycle spa
is discussed forthwith.

Substitution of Eq.~5.11! into ~4.9! ~with m51!, together
with use of Eq.~5.3!, furnishes the following asymptotic
form for M1 :

M1~ t !'Ū* t1B̄1exp, ~5.14!

whereinB̄ is the time-independent constant vector

B̄5 (
i PVG l

v~ i !P0
`~ i !B~ i !. ~5.15!

3. Solution of the B-equation in the cocycle space

Since each of then differentB vectors is determined only
to within a single arbitrary, additive constant, say,B( i * ), the
n21 dimensional cocycle space furnishes a system
method for identifying the basis nodei * as that not appear
ing in the basis set of the cocycle space. Adapting
method of Adler and Brenner@14# to the problem at hand
define the following pair ofm33 matrices:

b2~ j !5P0
`~ i !@B†~ i !2B†~ i * !# @ j PV2~ i !#,

~5.16!

b1~ j !5P0
`~ i !@B†~ i !2B†~ i * !# @ j PV1~ i !#,

~5.17!

as well as the (n21)33 matrix,

a* ~ i !5@v~ i !P0
`~ i !Ū* 2a~ i !#† ~ i Þ i 0!. ~5.18!

With use of the preceding matrix definitions, Eq.~5.12! may
be recast into the compact matrix form,

K†
•@~c1d!•b22d•b1#5a* . ~5.19!

Eventual computation of the dispersivity@cf. Eq. ~5.32!#
necessitates use of the edge-based vector,
3-12
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b~ j ! 5
def.

B~ i !2B~ i 8! ~ j 5$ i 8,i %!, ~5.20!

where the edge is oriented with its initial vertex ati 8. Define
an m33 matrix, B, whose rows are the vectorsb†( j ), the
matrix B being computed from the relationships@14#

b2~ j !5B2
•B, b1~ j !5B1

•B, ~5.21!

whereB2 andB1 arem3m matrices involving the probabil
ity densityP0

`( i ). Consequently, Eq.~5.19! may be rewritten
as

K†
•@~c1d!•B22d•B1#•B5a* . ~5.22!

Although the (n21)3m coefficient matrixK†
•@(c1d)•B2

2d•B1# is not square, it is always possible to augment
coefficient matrix with additional rows containing the nu
sum of b( j ) vectors along a cycle of the graph@52#, with
concomitant rows of zeros in the solution vectora* .

C. Second-order moments

Substitute the asymptotic solutions~5.1! and ~5.11! into
Eq. ~4.15!, making use of Eq.~5.10!, so as to arrive at the
following asymptotic expression for the second-order glo
moment:

dM2~ t !

dt
'2Ū* Ū* t1 (

j PEG l

j PV1

@c~ j !1d~ j !#P0
`~ i 8!

3@R~ j !R~ j !1R~ j !B~ i 8!1B~ i 8!R~ j !#

1 (
j PEG l

j PV2

d~ j !P0
`~ i 8!@R~ j !R~ j !2R~ j !B~ i 8!

2B~ i 8!R~ j !#1exp. ~5.23!

The dispersivity dyadic may be computed from the followi
expression@1#, derived from Eqs.~3.9!, ~3.10!, ~4.1!, and
~4.9!:

D̄* 5
1

2
lim
t→`

1

2
~M22M1M1!. ~5.24!

The RHS of the latter may be evaluated by use of E
~5.10!, ~5.14!, ~5.15!, and ~5.23!, together with use of the
definition of theb( j ) vector ~5.20! and Eq.~4.10!, to even-
tually furnish the formula

D̄* 5sym (
j PEG l

j PV1

$c~ j !P0
`~ i 8!1d~ j !@P0

`~ i 8!1P0
`~ i !#%

3@ 1
2 R~ j !R~ j !2R~ j !b~ j !#1sym~E!, ~5.25!

with E the tensor
02110
e

l

s.

E5 (
i PVG l

@a~ i !B~ i !2v~ i !P0
`~ i !Ū* B~ i !#. ~5.26!

Notationally, the symmetry operator for a generic matrixXY
is defined by the expression

sym~XY ! 5
def.

1
2 ~XY1YX !. ~5.27!

Evaluation ofD̄* via Eq. ~5.25! requires knowledge ofB( i )
@as well as ofP0

`( i )#.
Additional computational simplifications of Eq.~5.25! are

readily effected. Similar to Adler and Brenner@14#, we iden-
tify the terms appearing in the summation~5.26! for E as
being the negative of the RHS of Eq.~5.12! multiplied by
B( i ). Consequently, the expression forE may be reformu-
lated upon multiplying Eq.~5.12! by B( i ), summing over
i PVG l , and using Eqs.~4.10! and~5.20!, so as to eventually
obtain

E5 (
j PEG l

j PV1

d~ j !P0
`~ i !B~ i !b~ j !

2@c~ j !1d~ j !#P0
`~ i 8!B~ i 8!b~ j !. ~5.28!

To effect further simplifications, multiply Eq.~5.2! by
B( i )B( i ), and sum overi PVG l , using Eq.~4.10!, to obtain

(
j PEG l

j PV1

$@c~ j !1d~ j !#P0
`~ i 8!2d~ j !P0

`~ i !%

3@B~ i !B~ i !2B~ i 8!B~ i 8!#50. ~5.29!

Writing twice the symmetric part ofE using Eq.~5.28!, and
adding Eq.~5.29!, finally yields

2 sym~E!5 (
j PEG l

j PV1

$c~ j !P0
`~ i 8!

1d~ j !@P0
`~ i 8!1P0

`~ i !#%b~ j !b~ j !. ~5.30!

To arrive at a canonical form for ultimately calculating th
dispersivity dyadic, define the edge-based vector,

b̃~ j ! 5
def.

R~ j !2b~ j !, ~5.31!

and substitute Eq.~5.30! into Eq. ~5.25!, thereby obtaining

D̄* 5 1
2 (

j PEG l

j PV1

$c~ j !P0
`~ i 8!1d~ j !@P0

`~ i 8!1P0
`~ i !#%b̃~ j !b̃~ j !.

~5.32!

The preceding generic dispersivity formula properly redu
to the prior result of Adler and Brenner@14# upon setting
d( j )50 and P0

`( i )5V21. Equation ~5.32! represents the

fundamental paradigm wherebyD̄* can be calculated from
the prescribed discretel-scale data.
3-13
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VI. DISCUSSION

A. Dispersion in serpentine microchannels

By way of presenting an ‘‘elementary,’’ independent
confirmable, illustrative example, the present subsection
nishes an explicit network theory calculation of the me
velocity and dispersivity accompanying pressure-driven fl
occurring in a serpentine microchannel, as depicted in Fig
Such devices, currently proposed for compact chroma
graphic separations on microchips@62#, have been analyze
elsewhere@63# within the framework of classical continuou
Taylor-Aris dispersion theory for spatially periodic system

The network is chosen to consist of a rectangular collo
tion of channels of constant cross-sectional widthH ~and
areaA, A/H2@1!, arranged with periodl X in the globalX
direction (2`,X,`). Channels oriented locally within
the unit cell in thex andy directions possess lengthsl 1 and
l 2 , respectively, with all channel intersections possess
equal volume. The total volumeV of the unit cell accessible
to the particle is written as the product of the channel areA
and a characteristic linear~arc length! dimensionl s .

Particle transport is animated by imposing a uniform m
roscopic axial pressure gradient upon the interstitial flu
giving rise to a mean solvent~and hence entrained solu
particle! velocity v̄ within the individual channels. The dis
persed particles, entrained in the solvent flow, are assume
be pointsize in comparison with the channel cross-sectio
width, whereupon no hydrodynamic wall effects arise in t
subsequent calculations. Consequently, the molecular d
sivity of the particles in the channels is taken to be the c
stant scalar valueDm . Since thenet particle ~and fluid!
transport is necessarily unidirectional, taking place in theX
direction, scalar notation will be employed in what follow
with the tacit understanding that all vectors and dyadics
pearing within the general theory are directed along theX
axis.

Figure 5 depicts the local graph derived from the ‘‘co
tinuous’’ portrayal in Fig. 4. Each node consists of one h
the volume of both anx- and y-directed channel, togethe
with an intersection, so that the nodal volumes are all eq
v( i )5V/4 for all i. The geometry of the serpentine config

FIG. 4. Rectangular serpentine channel comprised of infini
extended parallel plates of constant channel widthH ~and areaA,
A/H2@1!. Channels oriented locally in thex and y direction are,
respectively, of lengthsl 1 andl 2 . The unit cell of lengthl X in theX
direction is indicated by the dashed box, with the periodicity a
net particle transport processes occurring solely in the directio
the unit vectorx. Alternating shaded/unshaded regions corresp
to the nodes in the local graph of Fig. 5.
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ration is captured by the following incidence matrix, cocyc
matrix, and macroscopic jump vector for the local graph:

D5F 21 0 0 1

1 21 0 0

0 1 21 0

0 0 1 21

G ,

K5F 21 1 0

0 21 1

0 0 21

1 0 0

G , R5S 0
0
0
l X

D . ~6.1!

The mean velocityv̄ in the channels specifies the edg
convection parameter,c( j )5Q5 v̄A for all j, and edge dif-
fusivities,d(1)5d(3)5dy andd(2)5d(4)5dx , wherein,

dx5
DA

l 1
, dy5

DA

l 2
, ~6.2!

with D the channel-scale Taylor-Aris dispersivity prevailin
within the pair of channel types. For a bounded, paral
plate configuration of effectively infinite aspect rat
(A/H2@1), the channel-scale dispersivity possesses
form @64,65#

D5Dm1
1

210

~ v̄H !2

Dm
f S A

H2D , ~6.3!

with f (A/H2)57.951 in the large aspect ratio limit.
The governing matrix equation for theP0

`( i ) appearing in
Eq. ~5.8! is of the form

F 2s dy 0 Q1dx

Q1dy 2s dx 0

0 Q1dx 2s dy

V/4 V/4 V/4 V/4

GF P0
`~a!

P0
`~b!

P0
`~c!

P0
`~d!

G5F 0
0
0
1
G ,

~6.4!

with s the parameter

s5Q1dx1dy . ~6.5!

y

d
of
d

FIG. 5. Local graph for the serpentine channel. The convec
transport coefficient for all edges is equal to the volumetric flu
flow ratec5Q. Edges 1 and 3 are oriented in they direction with
diffusive transport coefficientdy5DA/ l 2 , whereas edges 2 and
are oriented in thex direction with diffusive transport coefficien
dx5DA/ l 1 .
3-14
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Clearly, Eq.~6.4! possesses the solutionP0
`( i )5V21 for all

i. Substitution into Eq.~5.10! furnishes theL-scale mean
velocity through the serial sequence of serpentine chann

Ū* 5tXv̄, ~6.6!

where the dimensionless parametertX5 l X / l s represents the
‘‘tortuosity’’ l s of the channel projected onto theX axis, the
direction of net solute~and solvent! transport. The mean ve
locity Ū* given by Eq.~6.6! is identical to that obtained
alternatively via continuous Taylor dispersion theory@63#, as
well as from intuitive arguments based upon the nomi
holdup time of the solvent~and hence, of the particle! as the
fluid traverses a serpentine unit cell.

The structure of the cocycle matrix identifiesB( i * )
5B(d). Consequently, Eq.~5.19! possesses the explicit form

F 2s dy 0

Q1dy 2s dx

0 Q1dx 2s
G FB~a!2B~d!

B~b!2B~d!

B~c!2B~d!
G5F 3

4 QlX2dxl X

1
4 QlX
1
4 QlX

G ,

~6.7!

whose solution, in terms of theb2 vector, is

b2~ j !5
l X

4V 3
2Dl 213v̄ l 1l 212Dl 1

D~ l 11 l 2!1 v̄ l 1l 2

2

l 2~ v̄ l 112D !

D~ l 11 l 2!1 v̄ l 1l 2

0

4 . ~6.8!

Conversion toB via Eq. ~5.20! is accomplished by means o
the transformation matrix

B25~P0
`!21F 21 1 0 0

0 21 1 0

0 0 21 0

1 0 0 0

G . ~6.9!

After transforming tob̃ via Eq. ~5.31!, application of Eq.
~5.32! furnishes the dispersivity,

D̄*

D
5

tX
2

8 F412t1t2PeT1t1t2PeT
2

t11t21t1t2PeT
G , ~6.10!

wherein the following dimensionless parameters appear:

PeT5
def. v̄ l s

D
, ~6.11!

t15 l 1 / l s , andt25 l 2 / l s . The latter pair represent the cha
nel contributions to the tortuosity. The parameter PeT has
been referred to elsewhere as the Taylor@33# or macroscale-
@17# Péclet number.

The limiting behavior displayed by Eq.~6.10! in the re-
spective cases PeT!1 and PeT@1 accords with results ob
02110
ls

l

tained previously via classical continuous theories. Th
Rush et al. @63# examined the dispersion occurring
~intersection-free! serpentine microchannels in the limit o
two-dimensional parabolic Poiseuille flow everywhe
within the network, corresponding here to the limi
l 1→ l X/2, l 2→( l s2 l X)/2, and PeT→0. The vanishingly small
Péclet number in this limit implies a diffusion dominate
process, where the ensuing rapid diffusive mixing rend
the graph-theoretical description of the transport process
sentially indistinguishable from the exact continuous d
scription. In this limit,

D̄* 5tX
2D, ~6.12!

in accord with prior conclusions@63#, as well as with exist-
ing formulas for the effective molecular diffusivity occurrin
in tortuous porous media in the strict nonconvective lim
v̄→0 @31#.

In the opposite, infinite Taylor-Pe´clet number limit,
PeT→`, Eq. ~6.10! reduces to

D̄*

Dm
5S tXl s

8H DPe5S l X

8H DPe, ~6.13!

with Pe the Pe´clet number, based upon the molecular diff
sivity,

Pe5
def. v̄H

Dm
. ~6.14!

The dispersivity/molecular diffusivity ratio appearing in E
~6.13! scales linearly with Pe´clet number, with the propor-
tionality coefficient functionally dependent upon the expli
array configuration. This conclusion accords with prevaili
theories for convection-dominated or hydrodynamica
dominated dispersion~‘‘mechanical dispersion’’! occurring
in tortuous porous media@66,67#.

B. The ‘‘simple’’ network

Our second and final example illustrates the usefulnes
the present discrete theory in computing mean solute tra
port rates for a ‘‘simple’’ network. By ‘‘simple’’ is meant tha
only one intersection~albeit, perhaps, of multiple channels!
is present within the repetitive unit cell. Figure 6 depic
such a network, wherein the apparent complexity of the m
dium serves to underscore potential difficulties that would
encountered in the application of continuous Taylor-Aris d
persion theory. Numerous microfluidic devices exist who
geometries are adequately captured by this simple netw
model, including both micropatterned vector chromatog
phy chips@3,4# and entropic trapping devices@9#. Explicitly,
the vector chromatography chips produced by Austin a
co-workers @3,4# are comprised of a rectangular array
solid ~rounded! rectangular obstacles, with solute transp
occurring within the solvent-filled interstices between o
stacles. In effect, our prior analysis@5# of such devices is
equipollent with the present simple network theory, in whi
the unit cell consists of but a single intersection connectin
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narrow channel, oriented in they direction, to a wider chan-
nel, oriented orthogonally in thex direction.

Significant reductions in the computational scheme
immediately effected in the ‘‘simple’’ network limit. Since
the unit cell is comprised of but a single intersection, t
unconditional probability density assumes the formP0

`

5V21, whereinV is the total volume of the channels an
intersections contained within the boundaries of the unit c
Moreover, calculation of the dispersivity is vastly simplifie
by noting thatb50, owing to the fact that every edge on th
local graph is a loop. Armed with the latter data, the cano
cal expressions~5.10! and ~5.32! reduce simply to the re
spective forms

Ū* 5V21 (
j PEG l

j PV1

c~ j !R~ j !, ~6.15!

D̄* 5
1

2V (
j PEG l

j PV1

@c~ j !12d~ j !#R~ j !R~ j !. ~6.16!

The latter pair of formulas render transparent several f
damental properties of the simple network. TheI-space uni-
formity of the network reduces the mean velocity vector t
sum of purely convective contributions. In the network-lev
description of the periodic geometry, diffusive contributio
to the mean velocity arise from nodal differences in proba
ity density, rather than any finer-scaleR-space gradients—
the former vanishing within the single-node simple netwo
Rather, the diffusional transport processes occurring in
network description are manifested in the dispersivity d
adic. As is readily identified via Eq.~6.16!, dispersion within
the simple network arises from two fundamental sources~i!

FIG. 6. Schematic of a simple network in which the repetiti
unit cell, denoted by the dashed lines, consists of a numbe
channels exiting and entering a single intersection. Such netw
result in major simplifications of the discrete Taylor-Aris dispersi
analysis.
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a contributiond( j )R( j )R( j ), representing dispersive pro
cesses occurring within the channels; and~ii ! a contribution
c( j )R( j )R( j ), representing the mechanical dispersi
caused by the random residence times spent by a par
within the channel intersection domain before exiting t
latter and entering an abutting channel.

These simple network results furnish significant insig
into the mean solute transport and dispersion rates arisin
such media, as evidenced in our separate contribution@5#. As
such, they are likely to prove useful in subsequent appli
tions of our theory to the generalized Taylor-Aris dispersi
phenomena occurring on chip-based microfluidic devices

VII. CONCLUDING REMARKS

While the present discrete development is predica
upon the same rigorous method-of-moments homogeniza
scheme as is employed in continuous generalized Taylor-
dispersion theory when applied to spatially periodic me
@1,36#, our analysis has demonstrated the greater tractab
of discrete network theory over its continuous counterp
@1# ~the former approach being, albeit, more approximate!. In
the continuous theory, both the array geometry and inter
tial transport physics are presumed to be knownexactly,
thereby rendering the computed macrotransport parame
Ū* andD̄* physically accurate and mathematically rigorou
at least in an asymptotic sense. Such rigor comes, howe
at the expense of requiring the solution of two steady-s
convection-diffusion~-reaction! partial differential equations
for the continuous macrotransport fieldsP0

`(r ) and B(r ) at
all interstitial unit-cell pointsr @1#, as well as demanding
precise and explicit knowledge of the phenomenological
efficients quantifying thel-scale interstitial transport pro
cesses. With the exception of but a few limiting cases, s
phenomenological data are generally unavailable in the
erature; even when such data are available, or calculab
principle for simple bodies such as rigid spheres, an accu
quantification of the interstitial transport physics is oft
nonexistent for deformable bodies~e.g., freely-draining DNA
or polymer molecules!. Moreover, the structure of the gov
erning equations renders such equations insoluble in clo
form for all but the most trivial of array geometries—eve
the simple network discussed previously@5#. Furthermore,
the continuous theory’s requisite unit-cell quadratures can
generally be effected in closed form@2#, even for those rare
circumstances for which closed-form solutions exist for t
macrotransport fieldsP0

`(r ) andB(r ) themselves appearin
in the integrands of the requisite integrals.

The comments of the preceding paragraph point out
the resources required to extract useful macroscale infor
tion from the continuous microscale theory diminish the u
ity of such an approach, owing not only to the unavailabil
of pertinent transport data, but equally to the computatio
effort required and concomitant errors introduced via n
merical discretization of the local-scale transport paramet
Indeed, in the latter context, similarities existing betwe
finite-difference methods for solving partial differenti
equations and network models have been recognized fo
least 30 years@68#, inasmuch as the desired degree of ac

of
ks
3-16



es
tio
t

et

de
s

or

v

able
rete
of

-
of

or

GENERALIZED TAYLOR-ARIS DISPERSION IN . . . PHYSICAL REVIEW E65 021103
racy inherent in any finite-difference scheme necessitat
lumped parameter approach on the scale of the discretiza
Of course, the tractability of the discrete scheme presen
here arises as a consequence of thea priori homogenization
of the exact local-scale transport into the lumped-param
edge transport coefficientsU( j ), D( j ), and K( j ). While
asymptotic definitions exist for the latter parameters un
certain limiting circumstances, one cannot hope to rigorou
retain the full extent of the true local-scale transp
description—in particular, the complex geometry of even
well-defined, spatially periodic model porous medium. Ne
.
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ertheless, the counterbalance existing between compar
approximations necessary for either a continuous or disc
model render the latter attractive for the characterization
macromolecular transport in microfluidic devices.
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to choice of coordinate system or abstract representation o
physical medium@1#, any edge orientation will suffice. How-
ever, the microscale convection-diffusion equation@cf. Eq.
~3.4!# is valid only for c( j )>0, a convention which does no
arise in the continuous theory@1#.

@49# Further reductions in computational effort may be effected
specifying certain equation-specific rules for excluding loo
from some of the ensuing summations. We eschew such re
tions in what follows since they result in overly burdensom
notation, obscuring thereby the inherent simplicity of t
scheme itself.

@50# Assigning the volume to the vertices, despite the fact tha
large portion of the unit cell’s interstitial fluid volume ma
reside within the channels~edges! of the networks of real de-
vices@3#, lies counter to the rationale for assigning the volum
to the vertices in a previous network model of this type@14#.
There, it was assumed that the capillary tubes comprising
network linkages were thin, hence occupying little volum
whereas their intersections occupied large mixing volumes.
though not the case in present circumstances, the assign
of volume during the course of graphically coarse graining
network geometry is at its very naturead hoc. Therefore, the
present scheme does not suffer rationally by prohibiting~by
convention! the edges from possessing any volume.

@51# The incidence matrix here is opposite in sign from its tra
tional graph-theoretical definition@47#.

@52# C. Berge,Graphs and Hypergraphs~American Elsevier, New
York, 1973!.

@53# The cell indexI and its position vector counterpartRI will be
alternately employed in the following, as necessary.

@54# The edge transport parameters are knownexactlyonly for the
specific case of infinitesimally small particles translating e
clusively under the influence of an externally applied force
an isothermal fluid, since the mobility and the animating for
are then each independent of positionr within the channel.

@55# The mixing rule is the onlyvertextransport process accounte
for within this discrete model. There exists no fundamen
inconsistency between the continuous model, which implic
02110
r

he

y
s
c-

a

e
,
l-
ion
e

-

-

l

includes convective-diffusive solute mixing processes at
channel intersections, and the present discrete model, sinc
sensible Lagrangian displacements within the system in
latter model are assigned to the vertex-to-vertex displacem
processes occurring within the edges of the graph. Con
quently, any ‘‘transport’’ occurring internally within the verte
results in no net Lagrangian motion on the macroscale, a
from selecting a new edge.

@56# The factorK( i , j ) represents the probability of the particle b
ing located within edgej, whereas 12K( i , j ) is the probability
of the particle remaining within vertexi. This should not be
confused with the probability of the particle exiting in one
j 1 , j 2 ,...,j k of the k edges incident to vertexi.

@57# In contrast to the molecular diffusivity, the volumetric diffu
sive transport rated( j ) may be zero if an edge is inaccessib
to the particle, corresponding toK( j )50.

@58# N. G. van Kampen,Stochastic Processes in Physics a
Chemistry~North-Holland, New York, 1981!.

@59# In what follows, infinite summations effected over discre
variables constitute counterparts of infiniteR-space quadra-
tures effected over continuous variables employed in gene
ized Taylor-Aris dispersion analyses of continuous systems@1#.
Similarily, the subsequent mathematical manipulations of
resulting sums in Eq.~4.1! constitute discrete counterparts o
‘‘integration by parts’’ in quadratures of continuous variable

@60# W. M. Deen, AIChE J.33, 1409~1987!.
@61# The matricesci j and di j in the present scheme correspond

transition matrices in classical statistical physics@58#.
@62# C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, A

Chem.70, 3781~1998!.
@63# B. M. Rush, K. D. Dorfman, H. Brenner, and S. Kim, Ind. En

Chem. Res.~to be published!.
@64# M. Pagitsas, A. Nadim, and H. Brenner, Physica A135, 533

~1986!.
@65# An explicit form for the dispersivityD is presented here fo

completeness. TheL-scale dispersivityD̄* will ultimately

prove expressible as the ratioD̄* /D, irrespective of the exac
functional form, namely, Eq.~6.3!, adopted forD to character-
ize thel-scale channel dispersion process.

@66# J. Bear,Dynamics of Fluids in Porous Media~Elsevier, New
York, 1972!.

@67# D. L. Koch and J. F. Brady, J. Fluid Mech.154, 399 ~1985!.
@68# S. Kirkpatrick, Rev. Mod. Phys.45, 574 ~1973!.
3-18


